Probabilities

Random Variable

- ▶ Random variable (随机变量): is an uncertain quantity/number.
- ▶ Outcome (结果): is an observed value of a random variable.
- ▶ Event (事件): is a single outcome or a set of outcomes.
 - Mutually exclusive events (互斥事件): are events that cannot both happen at the same time.
 - Exhaustive events (遍历事件): are those that include all possible outcomes.
- Probability distribution: describes the probabilities of all the possible outcomes for a random variable.
- Discrete random variable and continuous random variable

Discrete Random Variable and Probability Function

A probability function, denoted p(x), specifies the probability that a random variable is equal to a specific value. More formally, p(x) is the probability that random variable X takes on the value x, or p(x) = P(X = x).

The two key properties of a probability function are:

- $0 \le p(x) \ge 1$.
- ∑ p(x) = 1, the sum of the probabilities for all possible outcomes, x, for a random variable, X, equals 1.

Continuous Random Variable and Distribution Function

4-13

Unconditional Probability and Conditional Probability

- ▶ Conditional probability 条件概率: $P(A|B) = \frac{P(AB)}{P(B)}$
- ▶ Joint probability 联合概率: P(AB)
- > Multiplication rule: $P(AB)=P(A|B) \times P(B)$

Independent and Mutually Exclusive Events

> The occurrence of A has no influence of on the occurrence of B

- P(A|B)=P(A) or P(B|A)=P(B)
- $P(AB)=P(A) \times P(B)$
- $P(A \text{ or } B) = P(A) + P(B) P(A) \times P(B)$
- > Addition rule: P(A or B)=P(A)+P(B)-P(AB)
 - If A and B are mutually exclusive events, then: P(A or B)=P(A)+P(B)

- Bond A and Bond B have the same rating and the same probability of default. It is also estimated that:
 - The probability that both Bond A and Bond B will default during the next year is 5%; and
 - If Bond A defaults next year, there is a 50% probability that Bond B will also default.

What is the probability that neither Bond A nor Bond B will default over the next year?

- **A**. 75%
- **B**. 80%

C. 85%
$$P(AB) = 5\%; P(B|A) = \frac{P(AB)}{P(A)} = \frac{5\%}{P(A)} = 50\% \rightarrow P(A) = 10\%$$

 $\mathbf{D}(\mathbf{A}\mathbf{D})$

D. 95%
$$P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - [P(A) + P(B) - P(AB)]$$

E o /

Joint and Unconditional Probabilities

		Interest Rates		
		Increase	No Increase	
	Good	14%	6%	20%
Economy	Normal	20%	30%	50%
	Poor	6%	24%	30%
		40%	60%	 100%

真题回顾

EXAMPLE 2.2: FRM EXAM 2007—QUESTION 93

The joint probability distribution of random variables *X* and *Y* is given by $f(x, y) = k \times x \times y$ for x = 1, 2, 3, y = 1, 2, 3, and *k* is a positive constant. What is the probability that *X* + *Y* will exceed 5?

- **a.** 1/9
- **b.** 1/4
- **c.** 1/36
- d. Cannot be determined

Answer: b. The function $x \times y$ is described in the following table. The sum of the entries is 36. The scaling factor k must be such that the total probability is one. Therefore, we have k = 1/36. The table shows one instance where x + y > 5, which is x = 3, y = 3. The probability is p = 9/36 = 1/4.

$x \times y$	x = 1	2	3
y = 1	1	2	3
2	2	4	6
3	3	6	9

$$\succ P(AB) = P(A|B) \times P(B) = P(B|A) \times P(A)$$

$$P(A \mid B) = \frac{P(B \mid A)}{P(B)} \times P(A)$$

> Example:

快速诊断仪:	有病 0.3	没病 0.7

	机器说有病	机器说没病
如果人真有病	0.8	0.2
如果人真没病	0.1	0.9

现一个人诊断为有病,问其真有病的概率?

Bayes' Formula

真题回顾

You are examining a pool of senior secured loans and observe that 10% of the loans are delinquent (拖欠) in their interest payments. The outstanding balance on 60% of the delinquent loans exceeds the value of the collateral pledged to secure them and the outstanding balance on 30% of the non-delinquent loans exceeds the value of the collateral pledged to secure them. If you randomly select a loan from the pool and observe that its collateral value is less than the outstanding balance, what is the probability that the loan is delinquent?

恭祝大家

FRM学习愉快!

顺利通过考试!